Source File
search.go
Belonging Package
sort
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// This file implements binary search.package sort// Search uses binary search to find and return the smallest index i// in [0, n) at which f(i) is true, assuming that on the range [0, n),// f(i) == true implies f(i+1) == true. That is, Search requires that// f is false for some (possibly empty) prefix of the input range [0, n)// and then true for the (possibly empty) remainder; Search returns// the first true index. If there is no such index, Search returns n.// (Note that the "not found" return value is not -1 as in, for instance,// strings.Index.)// Search calls f(i) only for i in the range [0, n).//// A common use of Search is to find the index i for a value x in// a sorted, indexable data structure such as an array or slice.// In this case, the argument f, typically a closure, captures the value// to be searched for, and how the data structure is indexed and// ordered.//// For instance, given a slice data sorted in ascending order,// the call Search(len(data), func(i int) bool { return data[i] >= 23 })// returns the smallest index i such that data[i] >= 23. If the caller// wants to find whether 23 is in the slice, it must test data[i] == 23// separately.//// Searching data sorted in descending order would use the <=// operator instead of the >= operator.//// To complete the example above, the following code tries to find the value// x in an integer slice data sorted in ascending order://// x := 23// i := sort.Search(len(data), func(i int) bool { return data[i] >= x })// if i < len(data) && data[i] == x {// // x is present at data[i]// } else {// // x is not present in data,// // but i is the index where it would be inserted.// }//// As a more whimsical example, this program guesses your number://// func GuessingGame() {// var s string// fmt.Printf("Pick an integer from 0 to 100.\n")// answer := sort.Search(100, func(i int) bool {// fmt.Printf("Is your number <= %d? ", i)// fmt.Scanf("%s", &s)// return s != "" && s[0] == 'y'// })// fmt.Printf("Your number is %d.\n", answer)// }func ( int, func(int) bool) int {// Define f(-1) == false and f(n) == true.// Invariant: f(i-1) == false, f(j) == true., := 0,for < {:= int(uint(+) >> 1) // avoid overflow when computing h// i ≤ h < jif !() {= + 1 // preserves f(i-1) == false} else {= // preserves f(j) == true}}// i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.return}// Find uses binary search to find and return the smallest index i in [0, n)// at which cmp(i) <= 0. If there is no such index i, Find returns i = n.// The found result is true if i < n and cmp(i) == 0.// Find calls cmp(i) only for i in the range [0, n).//// To permit binary search, Find requires that cmp(i) > 0 for a leading// prefix of the range, cmp(i) == 0 in the middle, and cmp(i) < 0 for// the final suffix of the range. (Each subrange could be empty.)// The usual way to establish this condition is to interpret cmp(i)// as a comparison of a desired target value t against entry i in an// underlying indexed data structure x, returning <0, 0, and >0// when t < x[i], t == x[i], and t > x[i], respectively.//// For example, to look for a particular string in a sorted, random-access// list of strings://// i, found := sort.Find(x.Len(), func(i int) int {// return strings.Compare(target, x.At(i))// })// if found {// fmt.Printf("found %s at entry %d\n", target, i)// } else {// fmt.Printf("%s not found, would insert at %d", target, i)// }func ( int, func(int) int) ( int, bool) {// The invariants here are similar to the ones in Search.// Define cmp(-1) > 0 and cmp(n) <= 0// Invariant: cmp(i-1) > 0, cmp(j) <= 0, := 0,for < {:= int(uint(+) >> 1) // avoid overflow when computing h// i ≤ h < jif () > 0 {= + 1 // preserves cmp(i-1) > 0} else {= // preserves cmp(j) <= 0}}// i == j, cmp(i-1) > 0 and cmp(j) <= 0return , < && () == 0}// Convenience wrappers for common cases.// SearchInts searches for x in a sorted slice of ints and returns the index// as specified by Search. The return value is the index to insert x if x is// not present (it could be len(a)).// The slice must be sorted in ascending order.func ( []int, int) int {return Search(len(), func( int) bool { return [] >= })}// SearchFloat64s searches for x in a sorted slice of float64s and returns the index// as specified by Search. The return value is the index to insert x if x is not// present (it could be len(a)).// The slice must be sorted in ascending order.func ( []float64, float64) int {return Search(len(), func( int) bool { return [] >= })}// SearchStrings searches for x in a sorted slice of strings and returns the index// as specified by Search. The return value is the index to insert x if x is not// present (it could be len(a)).// The slice must be sorted in ascending order.func ( []string, string) int {return Search(len(), func( int) bool { return [] >= })}// Search returns the result of applying SearchInts to the receiver and x.func ( IntSlice) ( int) int { return SearchInts(, ) }// Search returns the result of applying SearchFloat64s to the receiver and x.func ( Float64Slice) ( float64) int { return SearchFloat64s(, ) }// Search returns the result of applying SearchStrings to the receiver and x.func ( StringSlice) ( string) int { return SearchStrings(, ) }
![]() |
The pages are generated with Golds v0.6.7. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |